

RocksFS: Reducing Log Harm on LSM-Tree based Key-Value Store

Haitao Wang, Zhanhuai Li, Xiao Zhang, Zhen Chen, Xiaonan Zhao

School of Computer Science, Northwestern Polytechnical University, Xi’an Shaanxi China

Abstract

Nowadays, persistent key-value (KV) stores play a

critical role in a variety of modern data-intensive

applications, such as web indexing, e-commerce, and

cloud data storage, etc. KV stores serve as the

foundation for a growing group of important

applications by enabling efficient insertions, point

lookups, and range queries. RocksDB[1] is a typical

and popular open source KV store which features

highly flexible configuration settings that can be tuned

to run on a variety of production environments,

including pure memory, Flash, hard disks or HDFS.

Owing to the advantages of RocksDB, it is widely used

in Facebook and other distributed storage systems, such

as Ceph[2].

However, RocksDB also has some performance issues.

On one hand, RocksDB needs to leverage write-ahead-

log (WAL) files to guarantee the atomicity of write and

enable recovery in case of a crash, leading to additional

log overhead. On the other hand, RocksDB uses local

filesystem (e.g., Ext4) to store data, which can harm its

performance because of unnecessary operations of local

filesystem. The update of WAL files will introduce a

huge filesystem overhead, particularly for small insert-

intensive workload, which severely degrades the

performance of RocksDB.

Super Block(4KB)

RocksFS

metadata file file 1

Device Driver

Block Device

Kernel
Block Layer

RocksDB

Version(4KB) file 2 ... file n

Figure 1: Architecture of RocksFS.

In order to address these issues, we present RocksFS-a

simplified filesystem optimized for WAL writes to

reduce the log overhead. The architecture of RocksFS is

illustrated in Figure 1. The basic idea behind RocksFS

is preallocating space for WAL files to lower the update

frequency of metadata (i.e., WAL file size). RocksFS

leverages a new WAL format and preallocates space for

WAL file. In particular, it encapsulate every WAL

write to an encoded transaction which has a head to

indicate that transaction begins here, a length to record

its data size, and a tail to indicate the end of it (see

Figure 2). When a WAL file is created, RocksFS

preallocates a 4MB disk space for it. Every WAL write

will directly apply to the free space orderly until the

residual space is not big enough for current transaction,

in which case a new 4MB space is allocated for the

WAL file. Through this kind of new format, the

metadata update frequency of WAL files can be

reduced vastly especially for small insert- intensive

workload, since the metadata only need to be updated

when the WAL file size changes.

WAL file ...H L

Cn = Record chunk, size is kBlockSize
H = Head of the transaction, size is 5B
T = Tail of the transaction, size is 5B
L = Data length of this transaction

C1 L C2 C3T H T

Figure 1: New WAL file format in RocksFS

Besides, RocksFS only supports operations that are

necessary to RocksDB to lower filesystem overhead.

We compare RocksFS with Ext4 and BlueFS in the

environment of RocksDB on a HDD, the write

performance of storage system based on RocksFS are at

most 50% and 390% higher than it on BlueFS and Ext4,

respectively.

In conclusion, RocksFS can drastically improve the

small write performance of RocksDB. The data layout

and I/O patterns of RocksFS are highly optimized for

RocksDB running on HDD device. We hope that these

optimization techniques used to reduce the log

overhead in RocksFS will inspire the future generation

of high-performance key-value stores, especially for

LSM-tree based key-value stores. In future works, we

will research the performance of RocksFS in SSD, and

make effort to improve the implementation of RocksFS.

Keywords: key-value store, RocksDB, log overhead,

simplified filesystem, write performance.

References
[1] Facebook, “Rocksdb,” https://github.com/facebook/rocksdb,

2013, [Online; accessed 1-Dec-2016].

[2] S. Weil, “Ceph,” http://ceph.com/, 2007, [Online; accessed 17-

Nov-2016].

https://github.com/facebook/rocksdb

	Word 书签
	OLE_LINK4
	OLE_LINK6
	OLE_LINK7
	OLE_LINK9
	OLE_LINK11

