SSD blkdev: A kernel level SSD Emulator for host-based FTL

Raghavendra Rao Ananta, Jian Zhou, Jun Wang
University of Central Florida
Email: raghav3276 @knights.ucf.edu, {jzhou, jwang} @eecs.ucf.edu

Modern days’ Solid State Drives (SSDs) have become
open-ended in their design choices. The introduction of the
Flash Translation Layer (FTL), to comply with the existing
mechanical Hard Disk Drives (HDDs), has been taking a ma-
jor leap. Modern days FTL uses complex algorithms such
as data mining in order to efficiently handle the mappings.
Also, research has concluded that decision making of an FTL
without the behavioral understanding of the application might
lead to performance degradation of the system. Due to these
reasons, the processing demands have also increased, and as
a result, the placement of FTLs has moved from the SSD to
the host side.

Unfortunately, research leap taken toward host-based FTLs
cannot be evaluated by conventional simulators or emulators.
Hence, in order to make such developments, fast, easy and
cheaper, we propose an SSD emulator platform which could
be best suited for evaluating host-based or FTLs.

The architecture of the emulator is shown in the Figure 1.
At the higher level, the architecture is divided into two parts: a
kernel-space entity and a user-space entity. The kernel-space
gives the advantage that we can deal with the Logical Block
Addresses (LBAs) directly and also allows large chunks of
contiguous memory to emulate the flash area. However, the
kernel-space doesn’t enjoy the luxury of complex libraries,
such as complex data mining libraries. Hence, the part of the
FTL, which requires the support of these libraries are moved
to the user-space. As and when the kernel generates an 1/O
request, the LBA for that request is sent to the user-space
for translation and the I/O is performed (emulated) on this
translated address (Physical Page Number).

The following contributions are made by the paper:

e Framework oriented design, such that a new developer can
plug the FTL under test at any layer of the system stack.

e As a case study, various performance parameters such as
throughput, IOPS and total execution time has been com-
pared for two different filesystems, by varying two differ-
ent FTL logics.

The validation of the emulator was performed against a
commercial SSD. In order to perform the validation, the emu-
lator was configured as a 32 GB SSD, with a 4-way channel-
level parallelism. The FTL was chosen as a basic page-level
FTL (PFTL). The results showed that the performance of the
emulator follows almost the similar pattern as that of the com-
mercial SSD.

As a case study (Figure 2), two FTLs, DFTL [1] and PFTL,
were applied onto two filesystems, ext4 and btrfs. The results

DFTL PFTL Other FTL
A\ x T
T v w
ftl_main lorkioed
Application

x . (cp, dd, tar, ...)

H : open(),

ioctl() read(), 7. The workload application

H H write() generates an 1O request
User- H :
space : =

/dev/ssd_ramdisk
Kernel- A :
space : : J'

Filesystem layer
(xfs, ext3, ext4, btrfs, ...)

3. The LBA is sent to the FTL server H :
in the user-space and retums a PPN : :
H 2

2. Associated filesystem processes
the request and generates and LBA

ssd_blkdev
4. The driver read/writes the data Block Device Driver

from/to the corresponding page

Flash Storage | seeeees LBA-PPN Path

(Channels, Packages, Dies, Planes, Blocks, Pages) Data Path

N N N N N
I S I I

Figure 1: Architecture of SSD emulator
40
35

30

25
20
15
10
5
0

EXT4_DFTL EXT4_PFTL BTRFS_DFTL BTRFS_PFTL

u Wite
W Read

Throughput (MB/s)

Figure 2: Emulator application

shows that, by varying different FTLs, for the same filesys-
tem, results could vary drastically.

References

[1]1 Y. Kim A. Gupta and B. Urgaonkar. Dftl: a flash translation layer
employing demand-based selective caching of page-level address map-
pings. In Proceedings of the 14th international conference on Architec-
tural support for programming languages and operating systems, 2009.



